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We investigate the utility of mappings to solve numerically problems in infinite regions. 
It is demonstrated by six examples that mappings are very useful if the solution being sought 
behaves in a simple way at infinity; otherwise, they are not particularly helpful. Solutions 
that vanish rapidly or approach a constant at infinity arc readily treated by mapping, but 
solutions that oscillate out to infinity are not so amenable to these techniques. The 
examples investigated in detail include a one-dimensional diffusion equation, the anharmonic 
oscillator eigenvalue problem, the Orr-Sommerfeld eigenvalue problem for the Blasius 
boundary layer flow, the Falkner-Skan equation, the one-dimensional wave equation, and 
Burgers’ equation. For these examples, it is found that an algebraic mapping of the infinite 
region into a finite one is best. 

1. INTRODUCTION 

The numerical solution of continuum problems in unbounded regions involves 
two essential approximations: First, the continuum must be approximated by a 
discrete set; and, second, the unbounded domain must be approximated by a finite 
domain. The first problem is the one usually studied in numerical analysis. The 
second has received much less attention and is the subject of the present paper. We 
restrict the present study to one special technique for the treatment of the point of 
infinity: coordinate transformation of the infinite domain into a finite region. One 
of the principal conclusions of the paper is that, while coordinate transformation is 
not always advantageous, there is a class of problems for which it is a very useful 
technique. 
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Flow Direction 

LEADING EDGE 
OF PLATE 

FIG. 1. Coordinate system for flow past a semi-infinite flat plate. 

The present work was motivated by the problem of the numerical simulation of 
boundary layer flows in transition and turbulent regimes. The prototype of such 
flows is the flow over a semi-infinite flat plate undergoing transition to turbulence. 
The geometry of this three-dimensional flow (see Fig. 1) is infinite in three directions. 
The formulation of satisfactory boundary conditions is simplest in the y direction. 
On both theoretical and experimental grounds, periodic boundary conditions can be 
justified in y. On the other hand, treatment of the downstream x direction is not so 
simple. The mapping techniques of the present paper can not be used effectively for 
this aspect of the transition problem. Techniques for the imposition of inflow and 
outflow boundary conditions (which are appropriate in the x direction) will be dis- 
cussed elsewhere. However, the techniques developed here are appropriate for the 
treatment of the z direction (normal to the boundary layer). We find that mapping 
techniques are successful in z because the boundary condition at z = cc is that the 
flow is a simple laminar free stream (in the present case, uniform flow). 

The idea of mapping an infinite geometry into a finite one is not original. For 
example, van de Vooren and Dijkstra [I] successfully applied coordinate transforma- 
tions to the numerical solution of luminar flow past a flat plate; Davis [2] applied 
similar techniques to laminar flow past a parabola. 

We will examine the utility of mapping methods for six model problems, two of 
which are critical components of the boundary-layer transition study. In Section 2 
we study the solution of the one-dimensional diffusion equation in a semi-infinite 
region. In Section 3, the eigenvalues of the quantum-mechanical harmonic oscillator 
are found using mappings. In Section 4, the eigenvalues of the Orr-Sommerfeld 
equation for the Blasius boundary layer are calculated, while in Section 5 mapping 
techniques are applied to the calculation of Falkner-Skan boundary-layer profiles. 
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The examples of Sections 6 and 7 illustrate the limitations of mapping techniques. 
Finally, we summarize some heuristic rules for the applicability of mappings. 

2. ONE-DIMENSIONAL DIFFUSION EQUATION IN A SEMI-INFINITE DOMAIN 

Consider the mixed initial-boundary value problem 

ut = u,, 7 (2.la) 

u(x, t) = 0, t < 0, (2.lb) 
~(0, t) = sin t, t > 0, (2.lc) 

u(x, t) bounded as x + co. (2.ld) 

One particular physical realization of these equations is the Rayleigh shear flow in 
the neighborhood of an oscillating flat plate [3]. As t ---f co, the exact solution to (2.1) 
is asymptotically 

24(x, t) - e -zM sin(t - x/G) 0 + a>, (2.2) 

which is just a damped wave propagating with speed 2/2. 
The only unusual feature of the finite difference solution of (2.1) is the treatment 

of the unbounded domain 0 < x < co. The unbounded domain leads to no difficulty 
if we use the one-sided approximation 

a46 0 u(x, t) - 2u(x - h, t) + u(x - 2h, t) ---Z 
at h2 > (2.3) 

which is formally first-order accurate in h as h --f O+. Unfortunately, explicit time- 
step methods for the solution of (2.3) are unstable when At = O(h2). For example, 
Euler time stepping requires that At/h2 -+ 0 as h + 0+ for stability. 

On the other hand, centered space differencing methods [which do yield conditional 
stability restrictions of the usual kind d t = O(h2)] lead to an unclosed set of equations. 
For example, the second-order semidiscrete scheme 

wx, t) u(x + h, t) - 2u(x, t) + u(x - h, t) -= 
at h2 (2.4) 

involves u(x + h, t) for every x, so that a finite number of equations in the same 
number of unknowns is never obtained in a finite x-interval. 

The most obvious way to avoid the latter problem is to impose a boundary condition 
at an artificial boundary x = L, like 

u(L, t) = 0. (2.5) 

If L is fixed, the solution to (2.4)-(2.5) does not converge as h --f 0+ to the solution 
to (2.1). However, in the double limit L -+ + co, h -+ O+, convergence is achieved. 
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Another way to handle this problem is to use a nonuniform grid. Such a grid is 
obtained by first mapping the semi-infinite region 0 < x < co onto the finite region 
0 < z < 1 and then using the uniform grid 

zj = j/J, O<j<J. (2.6) 

The boundary condition (2.ld) becomes simply 

uJ finite. 

We consider two mappings: an exponential map 

and an algebraic map 
z = 1 - e-xlL , 

z = x/(x + L) 

(2.7) 

cw 

where L is a constant scale factor. In Fig. 2 we plot z versus x for the exponential 
map (2.7) with various values of L. In Fig. 3 we give similar plots for the algebraic 
map (2.8). The points on the curves in Figs. 2 and 3 indicate the values of x with 
zj = 0.04j (J = 25). For both maps, the equivalent mesh in x is nonuniform with the 
most rapid variation occurring with x > L. 

The exponential map (2.7) gives slightly better resolution near x = 0 than the 
algebraic map (2.9, while the algebraic map gives much better resolution than the 
exponential map as x -+ + cc. In fact, 

x/(x + L) < 1 - e-xlL 

for all x > 0. Thus, if a uniform grid is used in the mapped variables and L is fixed, 

1.0 

.6 

FIG. 2. Variation of z versus x for the exponential map with various values of L. The points 
on the curves indicate values of x with zj = 0.04j. 
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FIG. 3. Variation of z versus x for the algebraic map with various values of L. The points on the 
curves indicate values of x with zj = 0.04j. 

the grid point z = AZ lies at a slightly smaller value of x with the exponential map 
than with the algebraic map. Conversely, the grid point z = 1 - AZ lies at much 
larger x with the algebraic map (x - L/AZ) than with the exponential map (x - L 
In ~/AZ). 

The maps (2.7) and (2.8) are especially convenient because they yield simple 
expressions for derivatives. With the exponential map (2.7), derivatives with respect 
to x become 

wb t) 1 - z &(z, t) -=- 
ax L ---G--’ 

8”u(x, t) ~ = & (1 - z) ; (1 - 2) sg. 
ax2 

(2.9a) 

(2.9b) 

With the algebraic map (8) derivatives with respect to x become 

a+, t) (1 - 2)” &d(z, t) -= 
3X 

---7 L aZ 
(2.10a) 

&4(x, t) ----z&l fi auk t) 
8x2 

- z)” g (1 - z)” -&--- . (2 lob) 

With these transformations and centered space differencing of all z derivatives, a 
closed set of equations is obtained for the numerical solution of problem (2.1). 

Let us now compare some numerical results for the solution of (2.1) using the 
three methods discussed above: restriction to x < L, exponential mapping (2.7), 
and algebraic mapping (2.8). In general, there are two kinds of numerical error: 
truncation error and mapping error. In the case of the solution using the restricted 
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x-interval 0 < x < L, the truncation error is of order h2 and the mapping error due 
to neglect of the interval L < x < co and imposition of u(L, t) = 0 is of order 
exp(-L/dZ) [see (2.2)]. It turns out that, in order to obtain an absolute error of 
lo3 in the asymptotic solution (2.2) for t ---f co at x = 1, numerical solutions using 
the restricted-domain method require L 2 IO and h 5 Q, or a total of at least 50 grid 
points (see Table I). 

TABLE I 

Errors in the Numerical Solution of the Rayleigh Shear Flow at x = 1.0 as t -+ cc. 

L 

Mapping N 0.5 1.0 2.5 242 5.0 10.0 

Restricted 21 0.5 

domain 41 - 0.5 

81 0.5 

101 - 0.5 

201 0.5 

Exponential 21 7.5 x 10-t 3.1 x 10-s 

31 4.8 x 1O-2 1.8 x lo-$ 

41 4.1 x 10-a 1.2 x 10-a 

61 3.0 x lo-% 6.7 x 1O-4 

81 2.5 x 1O-2 4.5 x 1O-4 

Algebraic 21 9.5 x 10-4 4.7 x 10-d 

31 4.1 x 1O-4 2.4 x 1O-4 

41 1.9 x 10-h 1.5 x 10-4 

61 1.0 x lo-* 7.0 x 1O-6 

81 5.0 x 1O-4 4.0 x 1O-6 

5.7 x 10-z - 

5.7 x 10-z - 

5.7 x 10-a - 

5.7 x 10-Z - 

5.7 x 10-Z - 

~2.3 x 1O-4 3.4 x 1O-4 

1.7 x 10-a 1.5 x 10-a 

1.2 x 1O-4 8.3 x lo-” 

2.9 x 1O-6 3.6 x 1O-5 

1.6 x lo+ 2.1 x 1O-5 

2.0 x IO-3 5.1 x 10-S 

1.7 x 10-a 1.3 x 10-s 

1.7 x 1O-3 3.2 x 1O-4 

1.7 x 10-s 2.0 x 10-d 

1.7 x 10-s 6.6 x 10-j 

1.1 x 1O-s 4.6 x 1O-3 

5.7 x 10-4 2.0 x 10-a 

3.1 x 10-a 1.0 x 10-B 

1.3 x 10-a 5.1 x 10-4 

8.8 x 10-j 2.9 x 10-k 

5.4x10-4 - 1.4 x 10m3 4.2 x 1O-s 

3.0 x 10-k - 5.6 x lo-* 1.9 x 1O-3 

1.4x10-4 - 3.2 x 1O-4 1.1 x 1O-3 

1.1 x 10-a - 1.6 x lo-& 5.2 x lo-* 

3.7 x 10-b - 9.0 x 10-j 2.6 x lO-4 

The algebraic map allows accurate results to be obtained much more efficiently. 
For example, to achieve an error of less than 1O-3 as t + co at x = 1 requires less 
than 15 grid points using the algebraic map (2.8) with L = 1 (see Table I). 

The results given in Table I show that the algebraic map gives a much better 
representation of the solution for large x than the results obtained by restricting the 
domain or the exponential map. The reason for this behavior is simply that the 
amplitude of the solution (2.1) is 

,f&) = e-Lz/[~/zcl-z)l 

in terms of the algebraic map (2.8), while it is 
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in terms of the exponential map (2.7). The functionf,(z) and all its derivatives vanish 
at z = 1. On the other hand, fi’( 1) = cc (for L = l), which induces a relatively large 
error when the exponential map is used. Observe from Table I that the errors obtained 
using the exponential map do not decrease as h2 as h -+ Of when L < 22/2. When 
L = 22/Z, f2(z) and all its derivatives are finite at z = 1; the error is less than 1O-4 
as t -+ cc at x = 1 with only about 35 points. In general, if the exact solution or one 
of its z-derivatives is singular at z = 1 (or x = CO), large numerical errors result. 

3. EIGENVALUES OF THE QUANTUM-MECHANICAL HARMONIC OSCILLATOR 

The eigenvalues X of the Hermite equation 

UN - *x2221 = --Au, u bounded as I x 1 ---f cc (3.1) 

are h = n + Q (n = 0, 1,2,...). The corresponding eigenfunctions are the Hermite 
functions exp(- $x2) He,(x), where He,,(x) = 1, He,(x) = x, He,(x) = x2 - 1, and 
so on. If n is even the eigenfunctions are even functions of x; if n is odd, the eigen- 
functions are odd functions. We shall only study the even eigenvalues and eigen- 
functions. 

The numerical solution of (3.1) requires a method for handling the boundary 
conditions at f cc. Here we compare two methods applied to the determination of the 
even modes. In the first method, we assume that the function u is a function of x2 
alone and require 

u(L) = 0 (3.2a) 

for some large L. In the second method, we make the algebraic map 

z = 2[xZ/(x2 + LZ)] - 1 (3.2b) 

and seek the solution as a bounded function of z for - 1 < z < 1. 
For both methods of handling the boundary conditions at co, we use Chebyshev 

series [4] to represent the eigenfunction u(x). In the first method, u(x) is represented as 

44 = 5 an~2,(-dL), 
n=0 

(3.3) 

and the boundary condition (3.2a) is applied; in the second method, u(x) is represented 
in terms of the mapped variable (3.2b) as 

u(x) = 5 a,T,(z). (3.4) 
?Z=O 

Here T,(y) is the Chebyshev polynomial of degree n defined by 

T,(cos 0) = cos no. 
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TABLE II 

Convergence of Approximations to the Eigenvalue X = 4.5 of the Quantum-Mechanical 
Harmonic Oscillator using N + 1 Chebyshev Polynomials 

Map L N h 

Truncation 4.0 10 5.20628 14857 
-L<.x<L 4.0 30 5.20628 12800 

8.0 10 4.57205 38006 
8.0 20 4.50000 00394 
8.0 30 4.50008 00395 

16.0 20 4.56679 36320 
16.0 30 4.50000 17110 
32.0 30 5.47165 94003 

Algebraic 
2 

2=2-- 1 
x2 + L* 

4.0 20 4.50029 00880 
4.0 30 4.49999 99641 
8.0 10 4.56858 45536 
8.0 20 4.50002 73879 
8.0 30 4.49999 99985 

16.0 20 4.50000 02905 
16.0 30 4.50000 oooo0 
32.0 10 4.49656 47888 
32.0 20 4.49999 98895 
32.0 30 4.50000 oooo0 
64.0 20 4.49999 99898 

128.0 20 4.49999 96979 
256.0 20 4.62092 09932 

TABLE III 

Values of the Eigenvalues X of the Quantum-Mechanical Harmonic Oscillator Obtained 
with the Algebraic Map and N = 20 (21 Chebyshev Polynomials) 

x 

L 0.5 2.5 4.5 

1 0.5000 0171 2.5016 8050 4.4889 8957 

2 0.5@00 ooo4 2.5001 2172 4.4968 0153 
4 0.5000 oooo 2.5000 0347 4.5002 9009 
8 0.5000 oooo 2.5000 0000 4.5000 2739 

16 0.5000 oooo 2.5000 0000 4.5000 0029 
32 0.5000 oooo 2.5000 0000 4.4999 9989 
64 0.5000 oooo 2.5000 0000 4.4999 9999 

128 0.5000 oooo 2.5000 0000 4.4999 9970 
256 0.5000 0680 2.5040 4612 4.6209 2099 
512 0.5046 4052 2.7962 9628 6.3984 1320 
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The details of the application of Chebyshev series to the numerical solution of ordinary 
and partial differential equations are given in [4, 51. 

In Tables II and III, we present numerical results obtained by the methods described 
above for the even modes having exact eigenvalues 4, &, $. It should be apparent that 
the algebraic mapping achieves high accuracy much more efficiently than does 
simple truncation of the infinite interval. Notice that for a given number of Chebyshev 
polynomials N there is an optimal choice of scale L that gives the most accurate 
result. Also, observe that for fixed L there is rapid (faster than algebraic) convergence 
of the eigenvalues as N + co in both methods. This is a general property of Chebyshev 
expansions. However, when truncation to 1 x / < L is used the eigenvalues converge 
to the wrong answer unless the simultaneous limit L -+ co is also taken. 

1.5r 

FIG. 4. Plot of the approximate and exact eigenfimctions for the eigenvalue # of the quantum- 
mechanical harmonic oscillator obtained using the algebraic map (3.2b) with L = 42. The Chebyshev 
approximation (3.3) with N = 18 is not distinguishable from the exact eigenfunction u(x) = -(1 - 
9) exp( -2/4). 
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In Fig. 4, we plot the eigenfunction corresponding to the eigenvalue 8 obtained 
using the algebraic mapping (3.3) for various numbers of Chebyshev polynomials N. 
The eigenfunctions are all normalized by u(0) = -1. Here the exact eigenfunction 
of (3.1) with E = 8 is -(l - x2) exp(-1x2). Notice the very rapid convergence to the 
exact eigenfunction as N increases. 

4. ORR-SOMMERFELD EQUATION FOR BLASIUS FLOW 

The Orr-Sommerfeld equation governs two-dimensional linear disturbances to 
incompressible parallel shear flows. We assume that the (dimensionless) undisturbed 
flow velocity is U(z)& where a is a unit vector in the x-direction and that the z- 
component of the perturbation velocity is proportional to the real part of 

where 01, the longitudinal wavenumber, is assumed real and c (usually complex) is the 
phase speed of the disturbance propagating in x. If Im(c) > 0, the disturbance grows 
in time and the flow is unstable. It may be shown that the linearized, incompressible, 
Navier-Stokes equations can be reduced to the Orr-Sommerfeld equation 

( d2 
- - a2)” w = iaR [(U(z) - c) (g - dz2 

012 ) w - uyz)w], (4.1) 

where R is the Reynolds number. On rigid no-slip walls, the perturbation velocity 
must satisfy 

w  = w’ = 0. (4.2) 

The problem (4.1) with the homogeneous boundary conditions (4.2) is an eigenvalue 
problem for the phase speed c, assuming 01 is given. 

The laminar flow over a flat plate z = 0, as in Fig. 1, satisfies the conditions of the 
preceding paragraph except for a slow variation in x which we neglect; U(z) is the 
Blasius velocity profile which is determined by equations summarized in Section 5. 
Linearized disturbances to the Blasius flow are governed by (4.1) with the boundary 
conditions (4.2). As z + co, the disturbance should remain bounded; it may be 
shown that this condition becomes 

w(z) - fr”lz tz-+ 00) (4.3) 

if R is large, c is not close to 1, and Im (IX) > 0. 
The problem is to solve numerically the eigenvalue problem (4.1)-(4.3) in the 

region 0 < z < co. We will compare several methods for handling the boundary 
condition at co. First, the region may be truncated to the region 0 < z < L with the 
artifical boundary conditions 

w(L) = w’(L) = 0 (4.4) 
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imposed on the finite lid z = L. Second, the asymptotic behavior (4.3) may be used 
to infer the improved boundary condition 

w’(L) + CM(L) = 0 (4.5) 

on z = L. The other methods we will compare use the exponential and algebraic 
mappings (2.7)-(2.8) of the semi-infinite region 0 < z < co into a finite domain. 

The exponential map 

Z = 1 - 2e-“lL (4.6) 

transforms the region 0 < z < co into -1 < 2 < 1. Two types of boundary condi- 
tions will be applied at Z = 1 (z = co): 

and 
w(Z) = O(1) (Z+ l-) (4.7) 

w Izxl = dw/dZ Izzl = 0. (4.8) 
The algebraic map 

z = 2[z/(L + z)] - 1 (4.9) 

also transforms 0 \( z < co into - 1 < 2 < 1. Three kinds of boundary conditions 
will be applied at Z = 1: 

and 

w(Z) = O(1) (Z+ l--)3 (4.10) 

w  I&1 = 0, (4.11) 

w lzcl = dw/dZ Jzzl = 0. (4.12) 

We have computed the eigenvalues of the Orr-Sommerfeld equation for these 
various cases by expansion of w  in a series of Chebyshev polynomials [4], the eigen- 
values being found by matrix eigenvalue methods [6]. Comparisons between the 
methods are given for the case R = 580, 01 = 0.179, a case previously studied in some 
detail [7, 81. Results are given in Table IV only for the single unstable eigenvalue 
(im c > 0) for this choice of R, CL Here N is the number of Chebyshev polynomials 
used to represent the modes. High resolution numerical calculations yield the value 

c = 0.36412286 + i 0.00795972 (4.13) 

to eight decimal places. In all cases, w(O) = w’(0) = 0 at the rigid wall z = Z = 0. 
Comparison of cases 1-4 with the “exact” solution (4.13) shows that the error in c 

incurred by truncation to z < L is of order e-20rL; also, for fixed L, the convergence 
with increasing N is very rapid, consistent with the expected infinite-order rate of 
convergence of Chebyshev series [4]. Cases 5 and 6 show that the “improved” boundary 
condition (4.5) does not help, at least for the values of N used in the present calcula- 

581/25/3-6 
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TABLE IV 

Eigenvalues of the Orr-Sommerfeld Equation for Blasius Flow, R = 580, o( = 0.179 

N 
Boundary Conditions (number of 

Case Mapping atz= 03 L Chebyshev modes) c 

7 
8 
9 

10 

11 
12 
13 
14 
15 
16 

Truncation 

Exponential 

Algebraic 

w(L) = w’(L) = 0 
w(L) = w’(L) = 0 
w(L) = w’(L) = 0 
w(L) = w’(L) = 0 
w’(L) + aw(L) = 0 
w’(L) + aw(L) = 0 

w(1) = O(1) 
w(1) = O(1) 
w(l) = w’(1) = 0 
w(1) = w’(1) = 0 

w(1) = O(1) 

w(l) = o(1) 
w(1) = O(1) 
w(1) = w’(1) = 0 
w(1) = w’(1) = 0 
w(l) = 0 

10 
20 
20 
30 
20 
30 

1 

1 

44 
44 
46 
44 
44 
44 

42 
46 
46 
70 

26 
34 
42 
42 
60 
42 

0.37887 7 + i0.00025 0 
0.36455 7 + iO.00777 3 
0.36455 1 + iO.00778 1 
0.36399 6 + iO.00788 8 
0.36021 3 + iO.00667 1 
0.36404 1 + iO.00811 3 

0.34858 0 + iO.01312 9 
0.34961 1 + iO.01285 6 
0.38378 9 - iO.00276 6 
0.37853 I + iO.00047 1 

0.36414 7 + iO.00800 7 
0.36412 I + iO.00795 76 

0.36412 288 + iO.00795 975 
0.36412 325 + iO.00795 894 
0.36412 285 + iO.00795 973 
0.36412 287 + iO.00795 976 

tions. In fact, use of (4.5) does improve the results if N is large. We do not enter into 
these comparisons further because they are not central to the present paper. 

The results of cases 7-10 for the exponential map are very disappointing. With the 
upper boundary condition (4.7), the convergence rate is roughly like l/N; the boundary 
conditions (4.8) do not help. This behavior is explained as follows. The asymptotic 
behavior (4.3) implies that, in the mapped 

4.3) 
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Thus, w  and all its derivatives with respect to 2 approach 0 as 2 -+ I-. In contrast 
to the exponential map, the algebraic map gives nicely behaved solutions as 
2-t l--. 

5. APPLICATION TO THE FALKNER-SKAN EQUATION 

Consider the semi-infinite flat plate shown in Fig. 1 in which the uniform inflow at 
x = 0 is tilted at an angle #7r with respect to the plate. It can be shown that the x 
component of the velocity at z = cc is 

U(x) = U&/2)“. 

Here U, is the free stream velocity at x = 0, I is a length scale, and 

(5.1) 

172 = P/(2 - /3). (5.2) 

If fi > 0, the flow is accelerated along the plate; this case can also be interpreted as 
the flow over a wedge with an included angle of PT. If fl < 0, the flow is decelerated 
and the flow is just the same as occurs on the underside of the plate when ,!I > 0. 
Finally, if /3 = 0, the flow is parallel to the plate and neither accelerates nor decelerates. 

The requirement that the velocity at the surface of the plate be zero leads to the 
formation of a boundary layer in the immediate vicinity of the plate. This boundary 
layer flow problem is solved by introducing the similarlity variable 

7) = z[&Yz + 1) U(X)/VX]1’2 (5.3) 

and a stream function $(x, z) related to the x and z components of the velocity, 
u and v by 

u = $z, (5.4) 

v = -&. (5.5) 

If we set 

$ = @/b + 1)) ~~w)l”” f(T), (5.6) 

where v is the kinematic viscosity, the laminar boundary layer equations reduce to the 
Falkner-Skan equation 

f” +$” + /3[1 - (f’)2] = 0. (5.7) 

Here primes indicate differentiation with respect to v. The boundary conditions for 
this equation are as follows: 

(i) The requirement of zero velocity on the plate gives 

f(0) = f’(0) = 0. (5.8) 
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TABLE V 

Errors in Solution of the Falkner-Skan Equation Using 11 Grid Points 

Method 

Restricted domain 

Exponential map 

Algebraic map 

L Error in f’( 1) 

@ = 0) (f’(l) = .4606) 

1.0 5.4 x 10-r 
2.5 5.2 x 10-Z 
5.0 1.3 x 10-a 
7.5 (I 

10. ‘1 

1.0 -1.1 x 10-l 
2.5 -1.2 x 10-r 
5.0 -1.0 x 10-r 
7.5 -8.2 x 10-Z 

10. -6.9 x 10W 

1.0 5.8 x 10-G 
2.5 -4.7 x 10-1 
5.0 -2.8 x 10-o 
7.5 -4.0 x IO-6 

10. -6.7 x lO-5 

j¶ = -.l f’(1) = .3630 

Restricted domain 5.0 4.2 x IO-” 
7.5 @. 

Exponential map 5.0 -8.8 x 1O-p 
1.5 -7.3 x 10-Z 

Algebraic map 5.7 -4.6 x lo-” 
7.5 -6.4 x 10-e 

/¶ = .I f’(1) = .5274 

Restricted domain 2.5 3.2 x 1O-8 
5.0 1.4 x 10-i 
7.5 a 

Exponential map 2.5 -1.3 x 10-G 
5.0 -1.1 x 10-l 
7.5 -8.7 x lo-” 

Algebraic map 2.5 -5.5 Y 10-e 
5.0 -1.1 x 10-S 
7.5 -1.6 x 10-j 

a No acceptable (monotonic) solution. 
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(ii) The requirement that the flow velocity approach the free stream value as 
z -+ co implies 

f’(T) -+ 1 (7 + +m>. w  

Properties of the solutions to this boundary value problem have been extensively 
investigated [9]. 

We solved (5.7~(5.9) numerically using a fourth-order Rungc-Kutta shooting 
method together with the mappings introduced earlier. Some results of our computa- 
tions using only 11 grid points (!) are given in Table V. In this table, we give the errors 
in the approximate solution forf’($ at 77 = 1 for the restricted domain, exponential 
mapping, and algebraic mapping for a variety of choices of scale L for fixed total 
number of grid points. It is apparent from these results that the algebraic mapping 
allows substantial economies in the numerical solution of the Falkner-Skan equation. 
As in Section 4, the efficiency of the mapping methods is most important in the 
context of multidimensional numerical hydrodynamics, where economy in resolution 
is vital. 

6. WAVE EQUATION 

In this section we study the application of mapping to the problem 

Utt = %!x (0 < x < co, r > O), 

40, t) = f(t) 0 > 01, 
u(x, 0) = Ut(X, 0) = 0 (0 < x < 00). 

The exact solution to this problem is 

(6.1) 

4x, t> = f(t - 4, x < t, 

= 0, x b t, 
(6.2) 

which represents an outgoing wave at x = + co. 
If the semi-infinite interval 0 < x -=c cc is replaced by the finite interval 0 < x = L, 

boundary conditions must be applied at x = L. If the boundary condition that is 
applied is simply 

u(L, t) = 0, 

waves reflect from the boundary; the exact solution to (6.1) on the interval 0 < x < L 
with u(L, t) = 0 is 

45 0 = 2 [30 - x - 2nL) -3(t + x - 2(n + l)L)], (6.3) 
n-0 

where 3(s) = f(s) if s > 0 and 3(s) = 0 if s < 0. The solution (6.3) consists of the 
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original outgoing wave (6.2) together with reflected waves that begin to appear at 
t = nL, n = 1, 2 ,.... If x is near 0 the solution (6.3) is a good approximation to the 
exact solution (6.2) only for t -C 2L when the first reflected wave arrives at x = 0. 

There are other boundary conditions that can be applied at x = L that do not 
yield reflected waves. If we set 

Ut + u, = 0 (6.4) 

at x = L, the exact solution (6.2) is recovered. However, we do not enter into a 
discussion of radiation boundary conditions like (6.4) here; a full discussion of them 
will be given elsewhere. 

The mappings (2.7), (2.8) can also be applied to the wave problem (6.1). For 
example with the algebraic map (2.8), (6.1) becomes 

a”u = 5!g g (1 - 4” !g 
at2 (0 < z < 1, t > 0). (6.5) 

To analyze these methods, we note that there are basically two kinds of errors in the 
numerical solution: first, there are local truncation errors in the representation of the 
wave propagating through x; and, second, there are the reflected waves from the 
artificial boundary at z = 1. In practice, the first kind of error is kept to within a few 
percent with a second-order difference scheme so long as the grid resolution Ax 
satisfies 

Ax < h/M, (6.6) 

where h is the wavelength and M is a number of order 10; roughly speaking, at least 
10 grid points per wavelength are required for an accurate calculation. 

The error due to the reflected waves is more serious; when the first reflected wave 
arrives the solution is completely wrong! It turns out in practice that waves are 
reflected appreciably either from the boundary at x = L if there is no map or, with 
a map, from the points x at which 

Ax 2 &I. (6.7) 

When the local grid spacing gets larger than roughly +A, as it must for z close to 1, 
waves can no longer be resolved on the mapped grid. Since 

dxldz = L/(1 - z)=, 

where 01 = 1 for the exponential map (2.7) and OL = 2 for the algebraic map (2.8) 
and since the grid spacing in z is AZ = l/N, it follows that Ax = &I when 

1 - z = (2L/Nh)‘la. 

Thus, appreciable reflection of waves occurs near 

w3) x = @iv XL)l12, 
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-5 L 
FIG. 5. Plot of the solution to the wave equation (6.1) at x = 1 as a function of t using the 

restricted domain method with L = 5. 

with the algebraic map (assuming 2L < Nh) and near 

x = L ln(NA/2L) (6.9) 

with the exponential map. These results are consistent with the numerical results 
plotted in Figs. 5-7. 

Now we pose the following question. Suppose that N, the number of grid points, 
is fixed and that we wish to calculate k wavelengths of the solution (6.2) accurately 
for as long a time as possible. Since the scale of the maps is a free parameter, we can 
choose L to maximize the time interval of accuracy. The question is: For how long 
do the various mappings maintain an accurate solution? We analyze three cases: 
(i) z = x/L. In th is case, the calculation is accurate until roughly t = 2L when the 
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-5 L 

FIG. 6. Plot of the solution to the wave equation (6.1) at x = 1.25 as a function of t using the 
algebraic map with L = 5. 

first reflected wave arrives (assuming L > kh). Since we must choose L/N = Ax 5 h/M 
(where M = IO) it follows that 

t BCrUraCY =c-- 2hN/M. 

(ii) z q =- x/(x + L). In this case (6.8) shows that the first reflected wave arrives at 
x =- 0 at t =- (2NAL)1:2. However, small local truncation error for the first k wave- 
lengths about x = 0 requires that, for z near 0, dx < A/M. Thus, we must also 
require L 2 N/\/M. Thus, the optimal time of accuracy is roughly 

t accuru1y = (2/M)‘i2 Nh. 

(iii) z = 1 -- e-=iL. Equation (6.9) implies that the first reflected waves reach x = 0 
at t x 2L In(Nh/ZL). As in (i) and (ii) above, L 5 Nh/M so that 

kw,,y = (2/M) Nh W4P). 
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FIG. 7. Plot of the solution to the wave equation (6.1) at x = -5 In 8 9 1.15 as a function oft 
using the exponential map with L = 5. 

These results show that, if high accuracy is desired so M> 1, then the algebraic 
map (ii) gives the longest time of accuracy followed by the exponential map (iii) and 
the restricted domain (i). However, for the cases plotted in Figs. 5-7, the exponential 
map gives the largest value of faCCurLCY . 

7. BURGERS' EQUATION 

In this section we consider the utility of mappings for the problem 

(7.1) 

(7.2) 
(7.3) 
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Because of the nonlinearity of this problem, there are choices of f(x) and g(t) for 
which mapping is an effective technique to solve the problem numerically and other 
choices of f(x) and g(t) for which mapping is not effective. In general, if the solution 
approaches a constant as x -+ cc uniformly in t, mapping is effective; if the solution 
violates this condition, mapping is not effective. We will now give examples to illustrate 
these remarks. 

If f(x) = e-” - 1, g(t) = 0, then the solution to (7.1)-(7.3) satisfies 

U(X, t) - -tanh(x/2v) (t-+ +a). (7.4) 

For this problem, mapping methods work well. In Fig. 8 we plot the results of 
numerical integration of (7.1)-(7.3) using a second-order centered difference scheme 
together with the algebraic map (2.8) with L = 1. The results plotted in Fig. 8 illustrate 
the way in which the asymptotic solution (7.4) is achieved in time. 

0 

I- 

FIG. 8. Plot of the solution to Burgers’ equation (7.1) with u(w, 0) = e-z - 1 and ~(0, t) = 0. 
The problem is solved in the interval 0 < x < 00 using the algebraic map (2.8) with L = 1: z = 
x/(x + 1). The curve labeled t = 03 is the plot of the asymptotic solution (7.4). Here Y = .05 and 
101 grid points were used in the interval 0 C, z Q 1. 
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On the other hand, if f(x) = 0, g(t) = 1, then the solution ot (7.1)-(7.3) is given 
asymptotically by a propagating wave 

u(x, t) - 1 - tanh[(x - 3t)/2v] (t --j co). (7.5) 

For any of the numerical methods with a fixed grid to treat the boundary at x = co, 
there will be a time T beyond which the spatial resolution is not sufficient to reproduce 
u(x, t) accurately. If the domain is restricted to 0 ,< x < L, the asymptotic result (7.5) 
implies that the solution is accurate only for 

t < 2L. 

If one of the mappings is used, the solution becomes inaccurate when the shock 
location at x = if is within a region of poor x resolution. On the basis of the 
results in Section 6 [see (6.7)], we expect that large errors will result when the shock 

FIG. 9. The position of the shock, xs , as a function of time, t. The numerical results were ob- 
tained with 21 mesh points and the exponential mapping with L = 1.0,2.5,5.0, and 10.0 and Y = 1.0. 
The shock position, xs , is defined by u(x,, , t) = 4. The curves are labeled with the value of L. From 
E?q. (7.5), the shock speed is 3; the dashed line in the figure has a slope of 4. After a start-up period, 
t w 1, the shock propagates with a speed of & and then begins to slow down as the mesh spacing 
increases (see text). The arrows indicate the point at which the shock speed begins to deviate from 4. 
From IQ. (7.7) the deviation is predicted to occur at x = 5.9, 12.7, 14.0, 13.9 for L = 1.0, 2.5, 5.0, 
and 10.0, respectively. The deviation of the shock speed from the value 4 is observed to occur at 
x = 3.8, 9.0, 13.0, and 9.8 for L = 1.0, 2.5, 5.0, and 10.0, respectively. 
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thickness 2v is larger than fix. For both the algebraic and exponential maps 

dx 
z=&d 

where 01 = 1 for the exponential map and 01 = 2 for the algebraic map. Therefore if 
AZ = l/N, the effective resolution Ax = 2v when 

1 - z w  (L/2Nv)ll”, 

where we assume that L Q 2Nv. Thus, the solution using the algebraic map is ex- 
pected to deteriorate at 

xalg w ~Nv(L/~Nv)~/~, (7.6) 

while the exponential map should give results that deteriorate near 

xexp e 2Nv(L/2Nv) In(2Nv/L). 

FIG. 10. The position of the shock, XB , as a function of time, t. The numerical results were 
obtained using 21 mesh points and the algebraic mapping with L = 1.0, 2.5, 5.0, and 10.0 and 
Y = 1.0. The shock position, xs , is detied by u(xs , t) = 4. The curves are labeled with the values of 
L. From Eq. (7.5) the shock speed is i; the dashed line in the figure has a slope of i. After a start-up 
period, t = 1, the shock propagates with a speed of $ and then begins to slow down as the mesh 
spacing increases (see text). The arrows indicate the point at which the shock speed begins to deviate 
from 4. From Eq. (7.6) the deviation is predicted to occur at x = 6.3, 10.0, 14.1, and 20.0 for L = 
1.0, 2.5, 5.0, and 10.0, respectively. The deviation of the shock speed from the value * is observed 
to occur at x = 6.4, 11.2, 13.0, and 17.0, for L = 1.0, 2.5, 5.0, and 10.0, respectively. 
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Note that (7.6) and 7.7) shows the explicit dependence of X,Q and xexp on the small 
parameter L/2Nv); observe that xeXl, < xalg . These predictions are consistent with 
the results plotted in Figs. 9 and 10. 

8. CONCLUSION 

We conclude from the examples given above that mappings are an effective way 
to solve problems in infinite domains provided that the solution is simple at infinity. 
If the solution oscillates as x --, zc then zc must be an essential singularity of the 
solution and mappings fail. Unfortunately, this implies that mappings are nearly 
useless for many important physical problems. 

When mapping is applicable, the proper choice of mapping should be based on the 
criterion that the solution to the problem be smooth in the mapped coordinate. For 
many problems this criterion favors algebraic mappings over exponential mappings. 
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